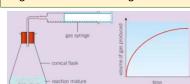
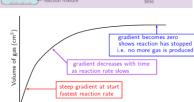
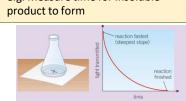
Pure substances and mixtures

C12 Chemical Analysis


To measure the rate of a reaction you can:


- Measure how fast the reactants are used up
 Measure how fast the products are
- made

e.g. Measure mass lost due to gas formed


e.g. Measure volume of gas made

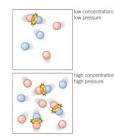
Rate = volume of gas ÷ time

e.g. Measure time for insoluble

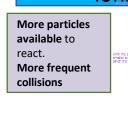
cm³/s

Chromatography

A successful collision is one that leads to a reaction

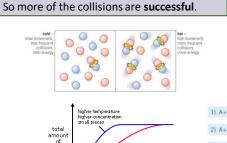

So to increase the rate of a reaction you must either

- Increase the frequency of collisions
- Increase the energy of the collisions
- Decrease the energy needed for a collision to be successful


Gas tests

Concentration and Pressure

More particles in the same space. More frequent collisions



Tests for Positive ions

Temperature

Particles move faster.
So they collide more frequently.
Particles collide with more energy.

Tests for Negative ions

Catalysts

Lower the energy
needed for
successful collisions.
(Activation energy)
Not used up.
Biological catalysts
are called enzymes

Instrumental Analysis

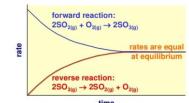
Can go in both directions.

$$A + B \rightleftharpoons C + D$$

If a reaction is exothermic in one direction it is endothermic in the other direction.

endothermic (in forward reaction)
hydrated copper(II) = anhydrous copper(II) + water

CusO₄.5H₂O \rightleftharpoons CusO₄ + 5H₂O


exothermic (in reverse reaction)

In a closed system (where nothing can get in or out) an equilibrium is reached where the rate of reaction is the same

At equilibrium:

in both directions.

- Rate of forward reaction = rate of reverse reaction.
- Mount of products and reactants don't change.

