Exothermic vs Endothermic

Exothermic

In some reactions more energy comes OUT than goes in

The reactants have more energy than the products.

e.g. combustion, oxidation, neutralisation.

Exothermic Vs. Endothermic

Endothermic

In some reactions more energy goes IN than comes out.

The products have more energy than the reactants.

e.g. thermal decomposition

Uses

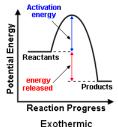
C7 Energy Changes

Reaction Profiles

Exothermic

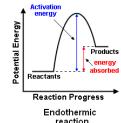
Self heating cans, hand warmers

Chemicals react in an exothermic reaction and give OUT heat energy.


Endothermic

Cool packs for sports injuries

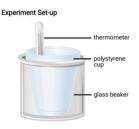
Chemicals react in an Endothermic reaction and take IN heat energy – therefore cooling the surroundings.


Exothermic

Products at LOWER energy than reactants

reaction

Endothermic



reaction

Products at HIGHER energy than reactants

Activation Energy is the energy needed to start a reaction.

Required practical

- Place the polystyrene cup inside the glass beaker to make it more stable.
- Measure an appropriate volume of each liquid, eg 25 cm³.
- Place one of the liquids in a polystyrene cup.
- Record the temperature of the solution.
- Add the second solution and record the highest or lowest temperature obtained.
- Change your independent variable and repeat the experiment. Your independent variable could be the concentration of one of the reactants, or the type of acid/alkali being used, or the type of metal/metal carbonate being used.